Abstract

The ontogeny of somatostatin immunoreactive interneurons in the cerebral cortex of the lizard Podarcis hispanica has been studied in histological series of embryos, perinatal specimens, and adults. Somatostatin immunoreactive interneurons appear in the early stages of lizard cerebral cortex ontogeny, their number increases during embryonary development, reaches a peak in early postnatal life, and decreases in adult lizards. The first somatostatin immunoreactive somata in the lizard forebrain appeared on E36, and they were located in non cortical areas. Then, on E39 and later, somatostatin immunoreactive neurons were seen in the lizard cortex in a rostral-to-caudal spatial gradient, which parallels that of the normal histogenesis of the lizard cerebral cortex. On E39, labelled somata were seen in the medial and dorsal cortex inner plexiform layers; immunoreactive puncta and dendritic processes were detectable in the inner plexiform layer of the medial cortex. On E40, labelled neurons were observed in the inner plexiform layer of the lateral cortex; labelled processes were found in the inner plexiform layers (dorsomedial, dorsal, and lateral cortices) and the outer plexiform layers (medial and dorsomedial cortices). At hatching (P0), some somatostatin immunoreactive neurons populated the external plexiform layer of the dorsomedial cortex. On P28, groups of labelled neurons appeared in the cell layer of dorsal and lateral cortices, reaching the adult-mature pattern of somatostatin immunoreactivity in the lizard cerebral cortex, i.e., labelled somata and dendritic processes populating the inner plexiform layers in addition to an axonic labelled plexus in the outermost part of the outer plexiform layers. Immunoreactive somata and processes occupied all the cortical areas, but they were especially abundant in the dorsomedial cortex. Proliferating Cell Nuclear Antigen (PCNA) immunostaining in the same histological series revealed that the number of PCNA immunoreactive nuclei in the subjacent proliferative neuroepithelium followed an inverse-complementary evolution to somatostatin, suggesting some temporal relationship between somatostatin immunoreactive cells and neurogenesis in the lizard cerebral cortex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call