Abstract

Small body size, large lungs, and dense pelage contribute to the unique challenges faced by diving sea otters (Enhydra lutris) when compared to other marine mammals. Here we determine the consequences of large lungs on the development of diving ability in southern sea otters (Enhydra lutris nereis) by examining the ontogeny of blood, muscle, and lung oxygen stores and calculating aerobic dive limits (cADL) for immature and mature age classes. Total oxygen storage capacity matures rapidly in sea otters, reaching adult levels by 2 mo postpartum. But this result is driven by exceptional lung capacity at birth, followed by a decrease in mass-specific lung volume with age. Blood and muscle oxygen stores remain well below adult values before weaning, with large pups exhibiting 74% and 54% of adult values, respectively. Slow muscle development limits the capacity of immature sea otters to dive against high positive buoyancy due to comparatively large lungs. Immature sea otters diving with total lung capacity (TLC) experience up to twice the mass-specific positive buoyancy as adults diving with TLC but can reduce these forces to comparable adult levels by using a smaller diving lung volume (DLV). The cADL of a juvenile with DLV is 3.62 min, while the cADL of an adult with TLC is 4.82 min. We find that the magnitude of positive buoyancy experienced by sea otters changes markedly with age and strongly influences the ontogeny of diving ability in this species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call