Abstract

Luteinizing hormone (Lh) and follicle-stimulating hormone (Fsh) control many aspects of gonadal development and function in teleosts. In the present paper, the specific antisera against ricefield eel Lhb (Lh beta subunit), Fshb (Fsh beta subunit), and Cga (the common pituitary glycoprotein hormone alpha subunit) were generated, and the cellular localization, initial appearance, and subsequent development of gonadotrophs in relation to early ovarian differentiation and development in the ricefield eel, a protogynous sex-changing teleost, were examined with immunochemistry. Lhb- and Fshb-immunoreactive signals were identified in distinct pituitary cells that occupied primarily the peripheral regions of the adenohypophysis. During ontogeny, Lhb-immunoreactive signals were first detected in the pituitary around 40 days after hatching (dah) when the oogonia transitioned into early primary growth oocytes, and the intensity of immunoreactivity increased concomitantly with the growth of primary oocytes from 60 to 140 dah. During overwintering from 170 to 230 dah, Lhb-immunoreactive signals were significantly decreased when a large proportion of perinucleolus oocytes contained intense Balbiani bodies. In contrast, Fshb-immunoreactive signals were not detectable in the pituitary until around 230 dah (in the spring after hatching) and slightly increased from 285 dah when the late perinucleolus oocytes began to enter the secondary growth phase. Both Lhb- and Fshb-immunoreactive cells were increased when the early cortical alveoli oocytes emerged at 300 dah. The mRNA expression of lhb and fshb coincided with their immunoreactive signals. Taken together, these results suggest that only Lh is involved in primary oocyte growth in ricefield eels, but both Fsh and Lh are important for the secondary ooctye growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call