Abstract

Neuronal networks in the mouse spinal cord express serotonin (5-HT)-induced rhythmic motor activity at early developmental stages (embryonic day (E) 12.5). Later in development, by post-natal day (P) 10, the 5-HT-evoked rhythmic motor activity matures and acquires an adult locomotor-like pattern. With the view to establishing a relationship between the ontogeny of locomotor networks and the maturation of spinal 5-HT systems, we have traced 5-HT immunoreactivity in the mouse spinal cord from E12.5 to PN10. By E12.5, descending 5-HT immunoreactive (5-HT-ir) fibers that likely originate from raphe nuclei were detected in the ventral and lateral funiculi, at anterior cervical spinal levels, but not at more caudal levels. Descending 5-HT-ir axons reached thoracic levels at E14.5 and lumbar levels at E16.5. Some 5-HT-ir fibers could be detected in the ventral and intermediate gray matter by E16.5, whereas the dorsal gray matter was not invaded before PN0. At PN10, a dense serotonergic innervation was restricted to the gray matter with a high concentration of 5-HT-ir fibers in three areas: dorsal horn, ventral horn (where motoneurons are located) and intermediate area. Surprisingly, from E16.5 to PN10, 5-HT-ir intraspinal neurons were found, exclusively at sacral levels. Their somata lay in the gray matter around the central canal and preferentially in the ventro-median part of the ventral horn. The functional significance of these sacral 5-HT-ir neurons is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call