Abstract

Thermogenic capabilities of red-winged blackbirds improve markedly during their 10-12-day nestling period, especially between day 5 and day 8. The time course of improvements may be determined by the maturation of skeletal muscles involved in shivering thermogenesis, particularly the pectoralis muscles. To test this hypothesis, morphological and biochemical changes in pectoral and leg muscles were measured in young and adult blackbirds. Both muscles grew disproportionately relative to body mass. The pectoralis consisted entirely of fast-twitch fibers, predominantly fast oxidative glycolytic. In contrast, the gastrocnemius muscle consisted of a mixture of slow and fast fibers (predominantly fast glycolytic). Although fiber composition was constant, both cross-sectional area and density of fibers increased with age in both muscles. Catabolic capacities of the pectoralis increased significantly (approximately 7-8-fold) throughout the nestling period, most abruptly after day 3 (citrate synthase, CS) or day 4 (3-hydroxacyl-CoA-dehydrogenase, HOAD). Myofibrillar ATPase activities in the pectoralis were initially low, but increased after day 5. Further increases in CS and myofibrillar ATPase activities occurred in the pectoralis after fledging. CS and HOAD activities in the leg were much lower, but myofibrillar ATPase activities were remarkably similar in the two muscles, differing only in adults. These results are consistent with the hypothesis that the development of endothermy is dependent on the morphological and biochemical maturation of skeletal muscles important in thermogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.