Abstract

BackgroundPlasma membrane Ca2+-ATPases (PMCAs) are high affinity Ca2+ transporters actively involved in intracellular Ca2+ homeostasis. Considering the critical role of Ca2+ signalling in neuronal development and plasticity, we have analyzed PMCA-mediated Ca2+-ATPase activity and PMCA-isoform content in membranes from mouse cortex, hippocampus and cerebellum during postnatal development.ResultsPMCA activity was detected from birth, with a faster evolution in cortex than in hippocampus and cerebellum. Western blots revealed the presence of the four isoforms in all regions, with similar increase in their expression patterns as those seen for the activity profile. Immunohistochemistry assays in cortex and hippocampus showed co-expression of all isoforms in the neuropil associated with synapses and in the plasma membrane of pyramidal cells soma, while cerebellum showed a more isoform-specific distribution pattern in Purkinje cells.ConclusionThese results show an upregulation of PMCA activity and PMCA isoforms expression during brain development in mouse, with specific localizations mainly in cerebellum. Overall, our findings support a close relationship between the ontogeny of PMCA isoforms and specific requirements of Ca2+ during development of different brain areas.

Highlights

  • Plasma membrane Ca2+-ATPases (PMCAs) are high affinity Ca2+ transporters actively involved in intracellular Ca2+ homeostasis

  • Protein expression levels of PMCA isoforms in developing cortex, hippocampus and cerebellum The expression of PMCA isoforms during development was examined in the membrane vesicles (MV) by Western blot using isoformspecific antibodies (Fig. 2A)

  • The PMCA2 antibody stained a spectrum of bands around 126-150 kDa in the three regions, whose intensity progressively increased with developmental stage

Read more

Summary

Introduction

Plasma membrane Ca2+-ATPases (PMCAs) are high affinity Ca2+ transporters actively involved in intracellular Ca2+ homeostasis. Considering the critical role of Ca2+ signalling in neuronal development and plasticity, we have analyzed PMCA-mediated Ca2+-ATPase activity and PMCA-isoform content in membranes from mouse cortex, hippocampus and cerebellum during postnatal development. Plasma membrane Ca2+-ATPases (PMCAs) are major components of this regulation. They hydrolyze ATP in order to get the energy to transport Ca2+ from the cytoplasm to the extracellular media across the plasma membrane. The maintenance of resting cytosolic Ca2+ at nM levels is critical for correct differentiation, dendritic growing and neural maturation [6], and PMCAs are major players in this function.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.