Abstract

Most stoichiometric models do not consider the importance of ontogenetic changes in body nutrient composition and excretion rates. We quantified ontogenetic variation in stoichiometry and diet in gizzard shad, Dorosoma cepedianum, an omnivorous fish with a pronounced ontogenetic diet shift; and zebrafish, Danio rerio, grown in the lab with a constant diet. In both species, body stoichiometry varied considerably along the life cycle. Larval gizzard shad and zebrafish had higher molar C:P and N:P ratios than larger fish. Variation in body nutrient ratios was driven mainly by body P, which increased with size. Gizzard shad body calcium content was highly correlated with P content, indicating that ontogenetic P variation is associated with bone formation. Similar trends in body stoichiometry of zebrafish, grown under constant diet in the laboratory, suggest that ontogeny (e.g. bone formation) and not diet shift is the main factor affecting fish body stoichiometry in larval and juvenile stages. The N:P ratio of nutrient excretion also varied ontogenetically in gizzard shad, but the decline from larvae to juveniles appears to be largely associated with variation in the N:P of alternative food resources (zooplankton vs detritus) rather than by fish body N:P. Furthermore, the N:P ratio of larval gizzard shad excretion appears to be driven more by the N:P ratio at which individuals allocate nutrients to growth, more so than static body N:P, further illustrating the need to consider ontogenetic variation. Our results thus show that fish exhibit considerable ontogenetic variation in body stoichiometry, driven by an inherent increase in the relative allocation of P to bones, whereas ontogenetic variation in excretion N:P ratio of gizzard shad is driven more by variation in food N:P than by body N:P.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.