Abstract

The testis is rich in central nervous system-type neuropeptides, including a GH-releasing hormone (GHRH)-like substance. We examined the ontogeny and pituitary regulation of testicular GHRH-like mRNA (t-GHRH mRNA) and compared this to expression of insulin-like growth factor-I (IGF-I) and IGF-II mRNA in developing testis. t-GHRH mRNA was measured by dot blot hybridization and quantitated using a hypothalamic GHRH cRNA standard. t-GHRH mRNA was not detectable in Northern blots in fetal testis on day 19 of gestation, but was present in low but detectable amounts in testicular dot blots on day 2 of life (0.44 pg/micrograms total RNA). Levels of the RNA increased beginning on day 21 (1.72 +/- 0.23 pg/micrograms total RNA) and reached adult levels by day 30 (4.96 +/- 0.84 pg/micrograms total RNA). The GHRH species on Northern analysis was about 1750 nucleotides at all ages examined; there was a larger species of about 3350 nucleotides seen on days 65 and 90. There was no correlation between the ontogeny of t-GHRH mRNA and either IGF-I or IGF-II mRNAs, which were maximally expressed in the testes of day 2 animals and decreased with age. To examine the influence of the pituitary gland on t-GHRH mRNA, levels of the mRNA were measured in the tests of hypophysectomized animals and age-matched controls. In animals hypophysectomized on day 21 and killed on day 42 and in animals hypophysectomized on day 42 and killed on day 63, there was marked diminution of t-GHRH mRNA (19 +/- 5% and 9 +/- 2% of age-matched controls, respectively). In contrast, in animals hypophysectomized on day 65 and killed on either day 80 or 90, there was a much smaller difference in levels of t-GHRH mRNA compared to values in control animals (73 +/- 20%). This was unlike the effect of hypophysectomy on testicular IGF-I mRNA, where uniform diminution was seen in all three groups. Because GH is important in the regulation of hypothalamic GHRH mRNA, we examined the effects of administration of recombinant human GH on the reinduction of t-GHRH mRNA after hypophysectomy and compared this to the reinduction of IGF-I mRNA. Neither t-GHRH mRNA nor testicular IGF-I mRNA increased in hypophysectomized animals treated with GH. Our results indicate that t-GHRH mRNA is developmentally regulated, and that the hypothalamic-pituitary axis is important in its expression.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.