Abstract

Endothermic thermoregulation in small, altricial mammals and birds develops at about one third to half of adult size. The small size and consequently high heat loss in these young should result in more pronounced energetic challenges than in adults. Thus, employing torpor (a controlled reduction of metabolic rate and body temperature) during development would allow them to save energy. Although torpor during development in endotherms is likely to occur in many species, it has been documented in only a few. In small, altricial birds (4 orders) and marsupials (1 order), which are poikilothermic at hatching/birth, the development of competent endothermic thermoregulation during cold exposure appears to be concurrent with the capability to display torpor (i.e. poikilothermy is followed by heterothermy), supporting the view that torpor is phylogenetically old and likely plesiomorphic. In contrast, in small, altricial placental mammals (2 orders), poikilothermy at birth is followed first by a homeothermic phase after endothermic thermoregulation is established; the ability to employ torpor develops later (i.e. poikilothermy–homeothermy–heterothermy). This suggests that in placentals torpor is a derived trait that evolved secondarily after a homeothermic phase in certain taxa perhaps as a response to energetic challenges. As mammals and birds arose from different reptilian lineages, endothermy likely evolved separately in the two classes, and given that the developmental sequence of torpor differs between marsupials and placentals, torpor seems to have evolved at least thrice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.