Abstract
The neuroendocrine system consists of five major hypothalamic-pituitary hormone axes that regulate several important metabolic processes, and it develops in all vertebrates during embryogenesis. In order to define initiation and establishment of these five axes, mRNA expression profiles of hypothalamic releasing and release-inhibiting factors, their pituitary receptors, and pituitary hormones were characterized during the second half of embryogenesis and first week post-hatch in the chick. Axis initiation was defined as the age when pituitary hormone mRNA levels began to increase substantially, and establishment was defined as the age when mRNA for all components had reached maximum expression levels. The adrenocorticotropic axis appears established by e12, as there were no major increases in gene expression after that age. Hypothalamic thyrotropin-releasing hormone and pituitary thyroid-stimulating hormone β-subunit increased between e10 and e18, indicating establishment of the thyrotropic axis during this period. Pituitary growth hormone substantially increased on e16, and hypothalamic growth hormone-releasing hormone did not increase until e20, indicating that somatotropic axis activity is established late in embryonic development. Lactotropic axis initiation is evident just prior to hatch, as pituitary prolactin and vasoactive intestinal peptide receptor 1 did not increase until e18 and e20, respectively. Hypothalamic gonadotropin-releasing hormone 1 increased after hatch, and pituitary luteinizing hormone β-subunit expression remained low until d3, indicating the gonadotropic axis is not fully functional until after hatching. This study is the first to characterize major hypothalamic and pituitary components of all five neuroendocrine axes simultaneously and considerably increases our understanding of neuroendocrine system establishment during development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.