Abstract

I used confirmatory factor analysis to evaluate the ability of causal developmental models to predict observed phenotypic integration in limb and skull measures at five stages of postnatal ontogeny in the laboratory rat. To analyze the dynamics of phenotypic integration, I fit successive age-classes simultaneously to a common model. Growth was the principal developmental explanation of observed phenotypic covariation in the limb and skull. No complex morphogenetic model more adequately reconstructed observed covariance structure. Models that could not be interpreted in embryological terms, coupled with a growth component, provide the best models for observed phenotypic integration. During postnatal growth, some aspects of integration vary in both the skull and limb. The covariance between factors and the proportion of variance unique to each character differ between some sequential age-classes. The factor-pattern is invariant in the limb; however, repatterning in the skull occurs in the interval between eye-opening and weaning. The temporal variation in the structure of covariation suggests that functional interactions among characters may create observed patterns of phenotypic integration. The developmental constraints responsible for evolutionary modification of phenotypes might be equally dynamic and responsive to embryonic functional interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call