Abstract
Captive rearing often alters the phenotypes of organisms that are destined for release into the wild. Natural selection on these unnatural phenotypes could have important consequences for the utility of captive rearing as a restoration approach. We show that normal hatchery practices significantly advance the development of endangered Atlantic salmon (Salmo salar) fry by 30+ days. As a result, hatchery fry might be expected to face strong natural selection resulting from their developmental asynchrony. We investigated patterns of ontogenetic selection acting on hatchery produced salmon fry by experimentally manipulating fry development stage at stocking. Contrary to simple predictions, we found evidence for strong stabilizing selection on the ontogeny of unfed hatchery fry, with weaker evidence for positive directional selection on the ontogeny of fed fry. These selection patterns suggest a seasonally independent tradeoff between abiotic or biotic selection favoring advanced development and physiological selection linked to risk of starvation in unfed fry. We show, through a heuristic exercise, how such selection on ontogeny may exacerbate problems in restoration efforts by impairing fry productivity and reducing effective population sizes by 13–81%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.