Abstract

Most studies on behavioural contributions to dispersal and recruitment during early life history stages of fishes have focused on coral reef species. For cold ocean environments, high variation in seasonal temperature and development times suggest that parallel studies on active behaviour are needed for cold-water species. Thus, we examined the critical swimming speed (U crit) of marine fish larvae from 2 contrasting species: Gadus morhua (Atlantic cod) and Myoxocephalus scorpius (shorthorn sculpin), a pelagic and bottom spawner respectively. Within-species comparisons showed that sculpin reared at 6 °C had lower initial U crit values, but a faster U crit increase through development compared with 3 °C conspecifics, ultimately resulting in faster critical swimming speeds at metamorphosis (10.5 vs. 9.1 cm·s − 1 ). In contrast, although cod larvae reared at 10 °C were faster swimmers at first feeding than 6 °C fish, temperature differences were absent after the first week. These results show that temperature influences the trajectory of larval critical swimming speed development, but that the relationship is species-specific. Although 6 °C sculpin and cod of similar length had equivalent U crit values, the smaller size of cod at hatch (5.3 vs. 10.8 mm for sculpin) resulted in much lower age-specific U crit values for cod. These data have significant implications for how swimming activity of the two species might affect dispersal, particularly in the first few weeks post-hatch. Overall, our data suggest that temperature during larval development influences the swimming capacity of cold-water marine fishes, and has important ramifications for biophysical models of dispersal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.