Abstract

Sources of mortality in both wild and cultured populations of marine bivalves during postlarval stages remain largely unknown, but may be partly associated with the inability to meet energetic demands during intense morphogenesis. The development of the gills in postsettlement scallops (Placopecten magellanicus) from 0.35 to 14 mm in shell height (SH) was investigated using scanning electron microscopy to determine the degree of size-specific differentiation of the gills and evaluate potential ontogenetic constraints in food acquisition. Key transitional stages in morphogenesis, likely to exert pronounced effects on feeding function, were identified and correlated with scallop size. The gill was initially homorhabdic, with unreflected inner demibranchs forming a basket-like structure maintained by ciliary junctions. Gill reflection, immediately followed by accelerated proliferation of gill filaments and formation of outer demibranchs, occurred at ~1 mm SH. Outer demibranchs were fully formed at ~2 mm SH. Suspension-feeding is probably rather inefficient prior to attaining 1–2 mm sizes. The onset of the heterorhabdic, adult form of the gill, which allows bidirectional particle transport and the potential for selection and for volume regulation of ingested material on the gill, occurred fairly late in development, at ~3.3–5.0 mm SH. Full development of gill plication was delayed until scallops attained ~7 mm. Gill differentiation in this species is thus relatively protracted and punctuated by critical transitional stages, which may be important in determining feeding and growth capacity of postlarval wild and cultured populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call