Abstract

Glycosylation is a major protein post-translational modification whose dysregulation has been associated with many diseases. Herein, an on-tissue chemical derivatization strategy based on positively charged hydrazine reagent (Girard’s reagent P) coupled with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was developed for analysis of N-glycans from FFPE treated tissue sections. The performance of the proposed approach was evaluated by analysis of monosaccharides, oligosaccharides, N-glycans released from glycoproteins, as well as MS imaging of N-glycans from human cancer tissue sections. The results demonstrated that the signal-to-noise ratios for target saccharides were notably improved after chemical derivatization, in which signals were enhanced by 230-fold for glucose and over 28-fold for maltooctaose. Improved glycome coverage was obtained for N-glycans derived from glycoproteins and tissue samples after chemical derivatization. Furthermore, on-tissue derivatization was applied for MALDI-MSI of N-glycans from human laryngeal cancer and ovarian cancer tissues. Differentially expressed N-glycans among the tumor region, adjacent normal tissue region, and tumor proximal collagen stroma region were imaged, revealing that high-mannose type N-glycans were predominantly expressed in the tumor region. Overall, our results indicate that the on-tissue labeling strategy coupled with MALDI-MSI shows great potential to spatially characterize N-glycan expression within heterogeneous tissue samples with enhanced sensitivity. This study provides a promising approach to better understand the pathogenesis of cancer related aberrant glycosylation, which is beneficial to the design of improved clinical diagnosis and therapeutic strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.