Abstract
This paper addresses the challenging problem of single-channel audio source separation. We introduce a novel user-guided framework where source models that govern the separation process are learned on-the-fly from audio examples retrieved online. The user only provides the search keywords that describe the sources in the mixture. In this framework, the generic spectral characteristics of each source are modeled by a universal sound class model learned from the retrieved examples via nonnegative matrix factorization. We propose several group sparsity-inducing constraints in order to efficiently exploit a relevant subset of the universal model adapted to the mixture to be separated. We then derive the corresponding multiplicative update rules for parameter estimation. Separation results obtained from automated and user tests on mixtures containing various types of sounds confirm the effectiveness of the proposed framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.