Abstract

On-surface synthesis has become a powerful approach to produce low-dimensional carbon-based nanostructures with atomistic precision. A large variety of analytical tools and methods are available to provide efficient monitoring of on-surface reactions, among which, scanning probe microscopy (SPM) has proven to be particularly efficient to characterize reaction intermediates and products down to the atomic scale. Nevertheless, due to limited temporal resolution, difficulties to explore the full temperature range, and lack of identifying the chemical environment of all elements involved in on-surface processes, SPM is ideally complemented with temperature programmed X-ray photoelectron spectroscopy (TP-XPS). In this short review, we aim to unveil some of the capabilities of synchrotron based TP-XPS reporting on our own research on Ullmann-type on-surface coupling reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.