Abstract

On-street cruising by drivers impedes the effectiveness of road traffic conditions and increases energy consumption and environmental impact. Existing models of on-street cruising for parking mainly embody those intrinsic on-street parking factors and disregard the extrinsic impacts from off-street parking gaming factors. This research focused on both the intrinsic and extrinsic elements, especially gaming factors, of off-street parking, i.e., the price of off-street parking, the waiting time of off-street parking, and the difference in walking time between their parking lots to their destinations. On-street cruising for a parking model is reconstructed in this paper in consideration with the equilibrium cruising time, i.e., the maximum tolerable cruise time after evaluating the cost of on-street and off-street parking. Correlation analysis showed that the off-street parking gaming factors were all positively related with the maximum tolerable cruise time. A simulation model was further presented for on-street cruising for the parking model by the cellular automata approach with real-world data. Simulation experiments demonstrated that the average speed of vehicles on the street increases by 9.858 km/h, the average delay decreases by 44.934 s, and the price of on-street parking increases by 4.5 CNY/h. The proposed on-street cruising for parking model proved effective by decreasing the maximum tolerable cruising time to bring significant improvements in average speed, average delay, and on-street cruising vehicles in road traffic flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call