Abstract

The rapid production of mobile and wearable devices along with the wireless applications boom is continuing to evolve everyday. This motivates network operators to integrate and exploit wireless spectrum across multiple radio access networks to cope with such intensive demand, while improving quality of service. However, it is crucial to develop innovative network selection techniques that consider heterogeneous networks characteristics, while meeting applications' quality requirements. Thus, this paper develops an optimal network selection with resource allocation scheme over heterogeneous networks that aims to optimize the latency, cost, and energy consumption, while accounting for data compression at the edge. Indeed, our framework could significantly enhance the performance of wireless healthcare systems by enabling data transfer from patients edge nodes to the cloud in cost-effective and energy-efficient manner, while maintaining strict Quality of Service (QoS) requirements of health applications. Our simulation results depict that our solution significantly outperforms state-of- the-art techniques in terms of energy consumption, latency, and cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call