Abstract

AbstractIn this chapter we focus on the pole structure of tree-level amplitudes. We argue that amplitudes factorise on these poles into lower-point amplitudes. Moreover, universal factorisation structures emerge when two momenta become collinear as well as in the limit of low energy of a single particle—the soft limit. These factorisation properties are the basis of an efficient technique for computing tree-level scattering amplitudes in gauge theories and gravity recursively—without ever referring to Feynman rules or even a Lagrangian. These recursion relations use as input lower-point amplitudes, so that the gauge redundancy, which is partly responsible for the complexity of conventional Feynman graph calculations, is absent in this entirely on-shell based formalism. We then show the invariance of scattering amplitudes under Poincaré transformations, and introduce the conformal symmetry of gauge-theory tree-level amplitudes. Finally, we highlight a surprising double-copy relation between gluon and graviton amplitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.