Abstract
In the present study laminar transition to oscillatory convection of fluids having different Prandtl numbers in a laterally heated vertical cylindrical enclosure for different aspect ratios (melt height to crucible radius) of 2–4 is investigated numerically for 0.01 ≤ Pr ≤ 10. Numerical solution to two-dimensional axisymmetric transient Navier Stokes equations and energy equation were solved by finite volume method using SIMPLE algorithm. Numerical results illustrate that there exists a critical Rayleigh number for each Prandtl number beyond which sustained laminar oscillatory flow sets in. The oscillatory regime was characterised by the oscillation of the average kinetic energy and average thermal energy of the melt. For a given aspect ratio, critical Rayleigh number increases with Pr upto 1 and then flattens. It was observed that for low Prandtl number fluids, Pr < 1.0, critical Rayleigh number is found to increase with increase in aspect ratio while for high Prandtl number fluids, Pr ≥ 1.0, it is found to decrease with increase in aspect ratio. The influence of aspect ratio on the transient behaviour of the melt volume below and above the critical Rayleigh number was studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.