Abstract

Deep saline aquifers used for CO2 sequestration are commonly made of sedimentary formations consisting of several layers of distinguishable permeability. In this work, the effect of a non-monotonic, vertically varying permeability profile on the onset of convective instability is studied theoretically using linear stability analyses. The onset time depends on the interaction between the permeability profile and the location of the concentration perturbation peak beyond which the concentration of CO2 decays. A thin low-permeability layer can either accelerate or delay the onset time of the convective instability depending on the nature of the permeability variation – whether the permeability transition is smooth or layered, the Rayleigh number (Ra), and the location of the permeability change (a^) relative to the perturbation peak (a^c*), which scales as a^c*≈14Ra−1 for homogeneous systems. However, the low permeable layer has no effect on the onset time when it is near the lower boundary of a medium with sufficiently large Ra (a^c*≪a^). This nontrivial dependence highlights the implication of ignoring geological features of a small spatial extent, indicating the importance of a detailed characterization of CO2 storage sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.