Abstract

Plasma fireballs are generated due to a localized discharge and appear as a luminous glow with a sharp boundary, which suggests the presence of a localized electric field such as electrical sheath or double layer structure. The present work reports the observation of normal and inverse homoclinic bifurcation phenomena in plasma oscillations that are excited in the presence of fireball in a double plasma device. The controlling parameters for these observations are the ratio of target to source chamber (nT/nS) densities and applied electrode voltage. Homoclinic bifurcation is noticed in the plasma potential fluctuations as the system evolves from narrow to long time period oscillations and vice versa with the change of control parameter. The dynamical transition in plasma fireball is demonstrated by spectral analysis, recurrence quantification analysis (RQA), and statistical measures, viz., skewness and kurtosis. The increasing trend of normalized variance reflects that enhancing nT/nS induces irregularity in plasma dynamics. The exponential growth of the time period is strongly indicative of homoclinic bifurcation in the system. The gradual decrease of skewness and increase of kurtosis with the increase of nT/nS also reflect growing complexity in the system. The visual change of recurrence plot and gradual enhancement of RQA variables DET, Lmax, and ENT reflects the bifurcation behavior in the dynamics. The combination of RQA and spectral analysis is a clear evidence that homoclinic bifurcation occurs due to the presence of plasma fireball with different density ratios. However, inverse bifurcation takes place due to the change of fireball voltage. Some of the features observed in the experiment are consistent with a model that describes the dynamics of ionization instabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.