Abstract

The electromagnetic forming (EMF) process is an attractive manufacturing technique, which uses electromagnetic (Lorentz) body forces to fabricate metallic parts. One of the many advantages of EMF is the considerable ductility increase observed in several metals, with aluminum featuring prominently among them. The quantitative explanation of this phenomenon is the primary motivation of this work. To study the ductility increase due to EMF, an aluminum ring is placed outside a fixed coil, which is connected to a capacitor. Upon the capacitor's discharge, the time varying current in the coil induces a larger current in the ring specimen and the resulting Lorentz forces make it expand. The coupled coil–ring electromagnetic and thermomechanical problem is solved, using an experimentally obtained constitutive model for a particular aluminum alloy. Our results show that for realistic imperfections, the EMF ring starts necking at strains about six times larger than its static counterpart, as observed experimentally. This study establishes the importance of solving the fully coupled electromagnetic and thermomechanical problem and provides insight on how different constitutive parameters influence ductility in an EMF process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.