Abstract

We study the onset of intermittency in stochastic Burgers hydrodynamics, as characterized by the statistical behavior of negative velocity gradient fluctuations. The analysis is based on the response functional formalism, where specific velocity configurations-the viscous instantons-are assumed to play a dominant role in modeling the left tails of velocity gradient probability distribution functions. We find, as expected on general grounds, that the field-theoretical approach becomes meaningful in practice only if the effects of fluctuations around instantons are taken into account. Working with a systematic cumulant expansion, it turns out that the integration of fluctuations yields, in leading perturbative order, to an effective description of the Burgers stochastic dynamics given by the renormalization of its associated heat kernel propagator and the external force-force correlation function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call