Abstract

Ternary Mg-Al-Sr alloys are the base of a few new creep-resistant, lightweight Mg alloys for automobiles. Hot tearing of Mg-Al-Sr alloys was studied by constrained rod casting (CRC) in a steel mold equipped with a load cell and a thermocouple. The alloys investigated included, in order of decreasing hot tearing susceptibility, Mg-4Al-1.5Sr, Mg-6Al-1.5Sr, Mg-8Al-1.5Sr, and Mg-8Al-3Sr. Two different molds were used, one for 8.7-mm-diameter rods and the other 7.9 mm. The cooling rate was varied by varying mold preheating from 523 K (250 °C) to 658 K (385 °C) and mold insulation. The load curve showed a clear peak when hot tearing occurred in all but Mg-8Al-3Sr due to its high resistance to hot tearing. From the peak and the cooling curve, the temperature at which hot tearing occurred was determined and found to decrease with increasing Al content from 4 to 8 pct. For a specific alloy, the hot tearing onset temperature did not change significantly with the rod diameter or mold preheating, at least within the experimental conditions used. The Scheil solidification model was used to estimate the fraction solid at the onset of hot tearing. It was found that hot tearing occurred near the end of primary solidification L → α (Mg) and that the fraction solid at which hot tearing occurred decreased with increasing Al content. The validity of the Scheil model was discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call