Abstract

In low-density axisymmetric jets, the onset of global instability is known to depend on three control parameters, namely the jet-to-ambient density ratio $S$, the initial momentum thickness $\unicode[STIX]{x1D703}_{0}$ and the Reynolds number $Re$. For sufficiently low values of $S$ and $\unicode[STIX]{x1D703}_{0}$, these jets bifurcate from a steady state (a fixed point) to a self-excited oscillatory state (a limit cycle) when $Re$ increases above a critical value corresponding to the Hopf point, $Re_{H}$. In the literature, this Hopf bifurcation is often regarded as supercritical. In this experimental study, however, we find that under some conditions, there exists a hysteretic bistable region at $Re_{SN}<Re<Re_{H}$, where $Re_{SN}$ denotes a saddle-node point. This shows that, contrary to expectations, the Hopf bifurcation can also be subcritical, which we explore by evaluating the coefficients of a truncated Landau model. The existence of subcritical bifurcations implies the potential for triggering and the need for weakly nonlinear analyses to be performed to at least fifth order if one is to be able to predict saturation and bistability. We conclude by proposing a universal scaling for $Re_{H}$ in terms of $S$ and $\unicode[STIX]{x1D703}_{0}$. This scaling, which is insensitive to the super/subcritical nature of the bifurcations, can be used to predict the onset of self-excited oscillations, providing further evidence to support Hallberg & Strykowski’s concept (J. Fluid Mech., vol. 569, 2006, pp. 493–507) of universal global modes in low-density jets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.