Abstract
We investigate self-excited axisymmetric oscillations of a lean premixed methane–air V-flame in a laminar annular jet. The flame is anchored near the rim of the centrebody, forming an inverted cone, while the strongest vorticity is concentrated along the outer shear layer of the annular jet. Consequently, the reaction and vorticity dynamics are largely separated, except where they coalesce near the flame tip. The global eigenmodes corresponding to the linearised reacting flow equations around the steady base state are computed in an axisymmetric setting. We identify an arc branch of eigenmodes exhibiting strong oscillations at the flame tip. The associated eigenvalues are robust with respect to domain truncation and numerical discretisation, and they become destabilised as the Reynolds number increases. The frequency of the leading eigenmode is found to correspond to the Lagrangian disturbance advection time from the nozzle outlet to the flame tip. The essential role of this convective mechanism is also supported by resolvent analysis, which finds that the same flame-tip disturbance structure and frequency are optimally amplified when the flame is subjected to external white noise forcing. Strong non-modal effects in the form of pseudo-resonance are not found. Nonlinear time-resolved simulation further reveals notable hysteresis phenomena in the subcritical regime prior to instability. Hence, even when the flame is linearly stable, perturbations of sufficient amplitude can trigger limit-cycle oscillations and higher-dimensional dynamics sustained by nonlinear feedback. A Monte Carlo simulation of passive tracers in the unsteady flame suggests a nonlinear non-local instability mechanism. Notably, linear analysis of the subcritical time-averaged limit-cycle state yields eigenvalues that do not match the nonlinear periodic oscillation frequencies. This mismatch is attributed to the fundamentally nonlinear dynamics of the subcritical V-flame instability, where the dichromatic, non-local interaction between the heat release rate along the flame surface and the vortex dynamics in the jet shear layer cannot be approximated as a simple distortion of the mean flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.