Abstract

The effect of ring stiffness and pressure on the glassy dynamics of a thermal assembly of two-dimensional ring polymers is investigated using extensive coarse-grained molecular dynamics simulations. In all cases, dynamical slowing down is observed with increasing pressure, and thereby, a phase space for equilibrium dynamics is identified in the plane of the obtained monomer density and ring stiffness. When the rings are highly flexible, i.e., have low ring stiffness, glassiness sets in via the crowding of crumpled polymers, which take on a globular form. In contrast, at large ring stiffness, when the rings tend to have large asphericity under compaction, we observe the emergence of local domains having orientational ordering at high pressures. Therefore, our simulations highlight how varying the deformability of rings leads to contrasting mechanisms in driving the system toward the glassy regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.