Abstract

Brief intervals of shear prior to a temperature quench accelerate crystallization, resulting in much smaller spherulites. Crystallization kinetics of five commercial linear isotactic polypropylenes were investigated, using a rheometer to impose shear and monitor crystallization after quenching. Shear and quench temperatures, shear rate, and duration were all systematically varied. The crystallization rate increases with increasing applied work, up to a value independent of undercooling beyond which the rate remains constant. This saturation is consistent with a maximum number of nuclei, possibly set by the concentration of heterogeneous impurities. The crystallization rate likewise increases with increasing shear rate, saturating at about 1 s–1 for all grades studied. Only chains in the high molecular weight tail, above about 104 kg/mol, are stretched at this shear rate. Faster crystallization after shear was observed for grades with lower isotacticity. Flow-induced crystallization persists even when shear is applied well above the equilibrium melting temperature (187 °C), finally weakening above the Hoffman–Weeks temperature (210 °C), perhaps because flow-induced precursors are no longer metastable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.