Abstract

We hypothesized that lumbar sympathetic nerve activity (LSNA) increases at the onset of whole-body dynamic exercise in the rat. To test this hypothesis, we recorded LSNA, heart rate (HR), and arterial pressure (AP) at rest and during a graded exercise test in six adult rats. Rats were instrumented with arterial and venous catheters and recording electrodes around the lumbar sympathetic trunk. Following recovery, each rat ran continuously on a hand-driven or motorized treadmill at 6 m.min-1, 12 m.min-1, and 18 m.min-1 on a 10% grade for approximately 3 min at each workload. Before exercise, mean arterial pressure (MAP), HR, and LSNA averaged 108 +/- 4 mm Hg, 385 +/- 20 bpm, and 100%, respectively. As hypothesized, all variables increased abruptly and dramatically at the onset of treadmill exercise. For example, MAP (117 +/- 5 mm Hg), HR (450 +/- 15 bpm), and LSNA (225 +/- 19%) all increased significantly within the first 25 s of treadmill running at 6 m.min-1. As the exercise continued, there was a progressive increase in HR; however, MAP plateaued at 6 m.min-1 and LSNA plateaued at 12 m.min-1. Since LSNA increased at the onset of whole-body dynamic exercise in the rat, we suggest that the increase in LSNA at the onset of exercise is mediated by a central (feed forward) mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.