Abstract

The onset and evolution of laser induced periodic surface structures (LIPSS) is of key importance to obtain clean ablated features on indium tin oxide (ITO) thin films at low fluences. The evolution of subwavelength periodic nanostructures on a 175 nm thick ITO film, using 10 ps laser pulses at a wavelength of 1032 nm, operating at 400 kHz, is investigated. Initially nanoblisters are observed when a single pulse is applied below the damage threshold fluence (0.45 J cm−2); the size and distribution of nanoblisters are found to depend on fluence. Finite difference time domain (FDTD) simulations support the hypothesis that conductive nanoblisters can enhance the local intensity of the applied electromagnetic field. The LIPSS are observed to evolve from regions where the electric field enhancement has occurred; LIPSS has a perpendicular orientation relative to the laser polarization for a small number (<5) of applied pulses. The LIPSS periodicity depends on nanoblister size and distribution; a periodicity down to 100 nm is observed at the lower fluence periphery of the Gaussian irradiated area where nanoblisters are smallest and more closely arranged. Upon irradiation with successive (>5) pulses, the orientation of the periodic structures appears to rotate and evolve to become aligned in parallel with the laser polarization at approximately the same periodicity. These orientation effects are not observed at higher fluence—due to the absence of the nanoblister-like structures; this apparent rotation is interpreted to be due to stress-induced fragmentation of the LIPSS structure. The application of subsequent pulses leads to clean ablation. LIPSS are further modified into features of a shorter period when laser scanning is used. Results provide evidence that the formation of conductive nanoblisters leads to the enhancement of the applied electromagnetic field and thereby can be used to precisely control laser ablation on ITO thin films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call