Abstract
We prove that given any $\beta<1/3$, a time interval $[0,T]$, and given any smooth energy profile $e \colon [0,T] \to (0,\infty)$, there exists a weak solution $v$ of the three-dimensional Euler equations such that $v \in C^{\beta}([0,T]\times \mathbb{T}^3)$, with $e(t) = \int_{\mathbb{T}^3} |v(x,t)|^2 dx$ for all $t\in [0,T]$. Moreover, we show that a suitable $h$-principle holds in the regularity class $C^\beta_{t,x}$, for any $\beta<1/3$. The implication of this is that the dissipative solutions we construct are in a sense typical in the appropriate space of subsolutions as opposed to just isolated examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.