Abstract

In this article, two classes of sufficient conditions of weak solutions are given to guarantee the energy conservation of the compressible Euler equations. Our strategy is to introduce a test function φ(t)vϵ to derive the total energy. The velocity field v needs to be regularized both in time and space. In contrast to the noncompressible Euler equations, the compressible flows we consider here do not have a divergence-free structure. Therefore, it is necessary to make an additional estimate of the pressure p, which takes advantage of an appropriate commutator. In addition, by using the weak convergence, we show that the energy equality is conserved in a point-wise sense.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.