Abstract
We give a general phenomenological description of the steady-state 1D front propagation problem in two cases: the solidification of a pure material and the isothermal solidification of two-component dilute alloys. The solidification of a pure material is controlled by the heat transport in the bulk and the interface kinetics. The isothermal solidification of two-component alloys is controlled by the diffusion in the bulk and the interface kinetics. We find that the condition of positive-definiteness of the symmetric Onsager matrix of interface kinetic coefficients still allows an arbitrary sign of the slope of the velocity-concentration line near the solidus in the alloy problem or of the velocity-temperature line in the case of solidification of a pure material. This result offers a very simple and elegant way to describe the interesting phenomenon of a possible non-single-value behavior of velocity versus concentration that has previously been discussed by different approaches. We also discuss the relation of this Onsager approach to the thin-interface limit of the phase-field description.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.