Abstract

Spike-wave discharges are electroencephalographic hallmarks of absence epilepsy. Spike-wave discharges are known to originate from thalamo-cortical neuronal network that normally produces sleep spindle oscillations. Although both sleep spindles and spike-wave discharges are considered as thalamo-cortical oscillations, functional relationship between them is still uncertain. The present study describes temporal dynamics of spike-wave discharges and sleep spindles as determined in long-time electroencephalograms (EEG) recorded in WAG/Rij rat model of absence epilepsy. We have proposed the wavelet-based method for the automatic detection of spike-wave discharges, sleep spindles (10–15Hz) and 5–9Hz oscillations in EEG. It was found that non-linear dynamics of spike-wave discharges and sleep spindles fits well to the law of ’on-off intermittency’. Intermittency in sleep spindles and spike-wave discharges implies that (1) temporal dynamics of these oscillations are deterministic in nature, and (2) it might be controlled by a system-level mechanism responsible for circadian modulation of neuronal network activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.