Abstract

The ONO (oxide/nitride/oxide) inter-poly dielectric thickness scaling effect on electric-field-leakage-current characteristics and charge retention characteristics in nonvolatile memories are investigated. Surface top-oxide thickness strongly affects the charge leakage and retention characteristics. Thicker than 3 nm top oxide can block hole injunction from the anode. Thick top oxide can reduce leakage current in both high and low electric field regions. Moreover, it can improve charge retention characteristics in nonvolatile memory cells. Therefore, a certain amount of top oxide is required to preserve good charge retention characteristics. SiN thickness scaling leads to an improvement in charge retention characteristics. Bottom oxide has an important role in suppressing electron leakage in a low electric field region. A degraded quality thin bottom oxide leads to charge retention capability degradation. Therefore, bottom-oxide quality and thickness control is an important subject for ONO thickness scaling. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.