Abstract
The upcoming fifth generation (5G) mobile communications urge software-defined networks (SDNs) and network function virtualization (NFV) to join forces with the multiaccess edge computing (MEC) cause. Thus, reduced latency and increased capacity at the edge of the network can be achieved, to satisfy the requirements of the Internet of Things (IoT) ecosystem. If not properly orchestrated, the flexibility of the virtual network functions (VNFs) incorporation, in terms of deployment and lifecycle management, may cause serious issues in the NFV scheme. As the service level agreements (SLAs) of the 5G applications compete in an environment with traffic variations and VNF placement options with diverse computing or networking resources, an online placement approach is needed. In this article, we discuss the VNF lifecycle management challenges that arise from such heterogeneous architecture, in terms of VNF onboarding and scheduling. In particular, we enhance the intelligence of the NFV orchestrator (NFVO) by providing: 1) a latency-based embedding mechanism, where the VNFs are initially allocated to the appropriate tier and 2) an online scheduling algorithm, where the VNFs are instantiated, scaled, migrated, and destroyed based on the actual traffic. Finally, we design and implement an MEC-enabled 5G platform to evaluate our proposed mechanisms in real-life scenarios. The experimental results demonstrate that our proposed scheme maximizes the number of served users in the system by taking advantage of the online allocation of edge and core resources, without violating the application SLAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.