Abstract
We address the problem of online state and parameter estimation in hierarchical Bayesian nonlinear dynamic systems. We focus on the Hierarchical Gaussian Filter (HGF), which is a popular model in the computational neuroscience literature. For this filter, explicit equations for online state estimation (and offline parameter estimation) have been derived before. We extend this work by casting the HGF as a probabilistic factor graph and present variational message passing update rules that facilitate both online state and parameter estimation as well as online tracking of the free energy (or ELBO), which can be used as a proxy for Bayesian evidence. Due to the locality and modularity of the factor graph framework, our approach supports application of HGF’s and variations as plug-in modules to a wide variety of dynamic modelling applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.