Abstract

We consider the problem of online path planning for joint detection and tracking of multiple unknown radio-tagged objects. This is a necessary task for gathering spatio-temporal information using UAVs with on-board sensors in a range of monitoring applications. In this paper, we propose an online path planning algorithm with joint detection and tracking because signal measurements from these objects are inherently noisy. We derive a partially observable Markov decision process with a random finite set track-before-detect (TBD) multi-object filter, which also maintains a safe distance between the UAV and the objects of interest using a void probability constraint. We show that, in practice, the multi-object likelihood function of raw signals received by the UAV in the time-frequency domain is separable and results in a numerically efficient multi-object TBD filter. We derive a TBD filter with a jump Markov system to accommodate maneuvering objects capable of switching between different dynamic modes. Our evaluations demonstrate the capability of the proposed approach to handle multiple radio-tagged objects subject to birth, death, and motion modes. Moreover, this online planning method with the TBD-based filter outperforms its detection-based counterparts in detection and tracking, especially in low signal-to-noise ratio environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.