Abstract

Abstract To efficiently determine whether an entire trajectory exhibits abnormal behavior, we introduce an online trajectory anomaly detection model known as GeoGNFTOD, which employs graph neural networks for road segment representation, creating a directed graph by mapping trajectories onto the road network. The graph representation is constructed based on the road segments in this directed graph. By utilizing Transformer sequence encoding, the trajectory representation is derived and hierarchical geographic encoding captures the GPS mapping of the original trajectories. Merging these two representations produces the final trajectory representation, serving as input for an LSTM-based variational autoencoder to reconstruct the trajectory representation, facilitating rapid online anomaly detection. Experimental findings on a large-scale taxi trajectory dataset illustrate the superior performance of GeoGNFTOD compared to baseline algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.