Abstract
Thermal reduction of graphene oxide (GO) via rapid heating is an environment-friendly and cost-effective method. However, the detailed reduction mechanism remains unclear because of lack of methods for online monitoring of GO thermal reduction. In this study, the thermal reduction of GO (from 20 °C up to 400 °C in argon atmosphere) was successfully monitored online and investigated through temperature-dependent FTIR spectroscopy combined with scaling-MW2D FTIR spectroscopy and generalized 2D correlation analyses. Raman spectroscopy, XPS, and XRD studies were also conducted to characterize the structural changes before and after reduction. SEM and AFM analyses were performed to directly observe the formation of defects in GO after thermal reduction. According to scaling-MW2D results, the thermal reduction of GO was divided into two processes, namely, 35 °C–182 °C (process I) and 182 °C–385 °C (process II). Process I rapidly eliminates oxygen functional groups, and process II gradual removes them. The 2D correlation analysis for each process indicated the sequential order of movements of the oxygen-containing functional groups during thermal reduction. Process I comprised six steps, and process II contained four sequential steps. This work elucidated the complex deoxygenation steps and the mechanism of GO thermal reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.