Abstract
This paper presents a new method of online estimation for the stator and rotor resistances of the induction motor for speed sensorless indirect vector controlled drives, using artificial neural networks. The error between the rotor flux linkages based on a neural network model and a voltage model is back propagated to adjust the weights of the neural network model for the rotor resistance estimation. For the stator resistance estimation, the error between the measured stator current and the estimated stator current using neural network is back propagated to adjust the weights of the neural network. The rotor speed is synthesized from the induction motor state equations. The performance of the stator and rotor resistance estimators and torque and flux responses of the drive, together with these estimators, are investigated with the help of simulations for variations in the stator and rotor resistances from their nominal values. Both resistances are estimated experimentally, using the proposed neural network in a vector controlled induction motor drive. Data on tracking performances of these estimators are presented. With this speed sensorless approach, the rotor resistance estimation was made insensitive to the stator resistance variations both in simulation and experiment. The accuracy of the estimated speed achieved experimentally, without the speed sensor clearly demonstrates the reliable and high-performance operation of the drive
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.