Abstract
A nonlinear black-box modeling approach using a state--space recurrent multilayer perceptron (RMLP) is considered in this paper. The unscented Kalman filter (UKF), which was proposed recently and is appropriate for state--space representation, is employed to train the RMLP. The UKF offers a derivative-free computation and an easy implementation, compared to the extended Kalman filter (EKF) widely used for training neural networks. In addition, the UKF has a fast convergence rate and an excellent capability of parameter estimation which are appropriate for online learning. Through modeling experiments of nonlinear systems, the effectiveness of the RMLP trained with the UKF is demonstrated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.