Abstract

Gait generation for legged vehicles has since long been considered as an area of keen interest by the researchers. Soft computing is an emerging technique, whose utility is more stressed, when the problems are ill-defined, difficult to model and exhibit large scale solution spaces. Gait generation for legged vehicles is a complex task. Therefore, soft computing can be applied to solve it. In this work, gait generation problem of a two-legged robot is modeled using a fuzzy logic controller (FLC), whose rule base is optimized offline, using a genetic algorithm (GA). Two different GA-based approaches (to improve the performance of FLC) are developed and their performances are compared to that of manually constructed FLC. Once optimized, the FLCs will be able to generate dynamically stable gait of the biped. As the CPU-time of the algorithm is found to be only 0.002 s in a P-III PC, the algorithm is suitable for on-line (real-time) implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.