Abstract

We analyze the problem of packing squares in an online fashion: Given a semi-infinite strip of width 1 and an unknown sequence of squares of side length in [0,1] that arrive from above, one at a time. The objective is to pack these items as they arrive, minimizing the resulting height. Just like in the classical game of Tetris, each square must be moved along a collision-free path to its final destination. In addition, we account for gravity in both motion (squares must never move up) and position (any final destination must be supported from below). A similar problem has been considered before; the best previous result is by Azar and Epstein, who gave a 4-competitive algorithm in a setting without gravity (i.e., with the possibility of letting squares “hang in the air”) based on ideas of shelf packing: Squares are assigned to different horizontal levels, allowing an analysis that is reminiscent of some bin-packing arguments. We apply a geometric analysis to establish a competitive factor of 3.5 for the bottom-left heuristic and present a $\frac{34}{13} \approx 2.6154$ -competitive algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call