Abstract

Brain–computer interfaces (BCIs) that reconstruct and synthesize speech using brain activity recorded with intracranial electrodes may pave the way toward novel communication interfaces for people who have lost their ability to speak, or who are at high risk of losing this ability, due to neurological disorders. Here, we report online synthesis of intelligible words using a chronically implanted brain-computer interface (BCI) in a man with impaired articulation due to ALS, participating in a clinical trial (ClinicalTrials.gov, NCT03567213) exploring different strategies for BCI communication. The 3-stage approach reported here relies on recurrent neural networks to identify, decode and synthesize speech from electrocorticographic (ECoG) signals acquired across motor, premotor and somatosensory cortices. We demonstrate a reliable BCI that synthesizes commands freely chosen and spoken by the participant from a vocabulary of 6 keywords previously used for decoding commands to control a communication board. Evaluation of the intelligibility of the synthesized speech indicates that 80% of the words can be correctly recognized by human listeners. Our results show that a speech-impaired individual with ALS can use a chronically implanted BCI to reliably produce synthesized words while preserving the participant’s voice profile, and provide further evidence for the stability of ECoG for speech-based BCIs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.