Abstract
Biological neural networks are equipped with an inherent capability to continuously adapt through online learning. This aspect remains in stark contrast to learning with error backpropagation through time (BPTT) that involves offline computation of the gradients due to the need to unroll the network through time. Here, we present an alternative online learning algorithm ic framework for deep recurrent neural networks (RNNs) and spiking neural networks (SNNs), called online spatio-temporal learning (OSTL). It is based on insights from biology and proposes the clear separation of spatial and temporal gradient components. For shallow SNNs, OSTL is gradient equivalent to BPTT enabling for the first time online training of SNNs with BPTT-equivalent gradients. In addition, the proposed formulation unveils a class of SNN architectures trainable online at low time complexity. Moreover, we extend OSTL to a generic form, applicable to a wide range of network architectures, including networks comprising long short-term memory (LSTM) and gated recurrent units (GRUs). We demonstrate the operation of our algorithm ic framework on various tasks from language modeling to speech recognition and obtain results on par with the BPTT baselines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.