Abstract

A simple, sensitive and inexpensive flow injection solid phase extraction (SPE) system was developed for automatic determination of trace level concentrations of metals. The potentials of this novel scheme, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace cadmium and lead determination in environmental water samples. The method was based on on-line chelate complex formation of target species with ammonium diethyldithiophosphate (DDTP), retention onto the surface of reversed-phase poly(divinylbenzene-N-vinylpyrrolidone) co-polymeric beads (Oasis HLB) and elution with methanol prior to atomization. A special PVC adapter was designed for easy and rapid replacement of the commercially available SPE cartridge. All main chemical and hydrodynamic parameters affecting the complex formation, sorption and elution of the analyte were optimized thoroughly. Moreover, the effect of potential interfering species occurring in environmental samples was also explored.For 90s preconcentration time, enhancement factors of 155 and 180, detection limits (3s) of 0.09μgL−1 and 0.9μgL−1 and relative standard deviations (R.S.D.) of 2.9% (at 4.0μgL−1) and 2.6% (at 20.0μgL−1) were obtained for cadmium and lead, respectively, with a sample throughput of 24h−1. The measurement trueness of the developed method was evaluated by analyzing a certified reference material and spiked environmental water samples. The proposed method is well suited to detect the target elements at concentration levels below the maximum allowed concentrations endorsed by the European Framework Directive (2008/105/EC) in inland and coastal waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.