Abstract

Radiation-induced soft errors are a major reliability concern in circuits fabricated at advanced technology nodes. Online soft-error vulnerability estimation offers the flexibility of exploiting dynamic fault-tolerant mechanisms for cost-effective reliability enhancement. We propose a generic run-time method with low area and power overhead to predict the soft-error vulnerability of on-chip memory arrays as well as logic cores. The vulnerability prediction is based on signal probabilities (SPs) of a small set of flip-flops, chosen at design time, by studying the correlation between the soft-error vulnerability and the flip-flop SPs for representative workloads. We exploit machine learning to develop a predictive model that can be deployed in the system in software form. Simulation results on two processor designs show that the proposed technique can accurately estimate the soft-error vulnerability of on-chip logic core, such as sequential pipeline logic and functional units as well as memory arrays that constitute the instruction cache, the data cache, and the register file.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.